
Chris Perkins
05/21/2015

Implementation of QT Algorithm for STAR ZDC :
 Combined Proton-Proton and Heavy-Ion Algorithms

QT Code Version: 0x6f
MCS File: qt32b_l0_v6_f.mcs

Description:
 This algorithm combines the STAR ZDC Proton-Proton (pp) and Heavy-Ion (HI)
QT algorithms into one algorithm. The pp algorithm follows from QT code v62 while
the Heavy-Ion algorithm follows from QT code v6A. No changes were made to either
algorithm except for internal bit timing to align output bits. Note that the “Good Hit”
requirement (or non-requirement) is retained from the original algorithms and is different
between the pp and Heavy-Ion algorithms.
 In addition to combining the two algorithms, the east and west sides can be
configured independently to use either algorithm. The Algorithm Select register must be
the same for both East QT Daughter Cards (A & B). This register must also be the same
for both West QT Daughter Cards (C & D).

 Proton-Proton Algorithm :
 This algorithm compares various ADC sums to thresholds, passes two separate
partial TAC values (East and West), and passes two separate partial ADC sums (East and
West). To choose this algorithm set the Algorithm Select register to ‘0’ for East or West.
 Only channels that satisfy a “Good Hit” requirement are included in all parts of this
algorithm (ADC sums for threshold comparison, TAC output, ADC sum output). A
“Good Hit” is defined as one where the ADC value is greater than some threshold and the
corresponding TAC value is greater than TAC_MIN and less than TAC_MAX. The
channel mask register can be used but note that ADC and TAC channels must each be
masked individually.
 Note that only the first two ADC and TAC channels are used on each daughter card.
The other channels will show up in the datastream but are not considered in the trigger
decision.
 The first sum considered is channel 0 + 1 on each daughter card. This is compared
to Pair_Threshold and one bit per daughter card is output. The second sum considered is
channel 0 + 1 on daughter A plus channel 0 + 1 on daughter B. A similar sum is
calculated from channels 0 + 1 on daughter C plus channels 0 + 1 on daughter D. These
sums are compared to Sum_Threshold and two bits total are output from each QT32 (East
and West).
 There are two separate partial TAC values output : the upper 10 bits (2-11) from the
first TAC channel on daughter A and the first TAC channel on daughter C, both subject
to the “Good Hit” requirement on the full TAC value.
 This algorithm also outputs the upper three bits (11-13) from the (channel 0+1)AB
sum and the (channel 0+1)CD sum.

 Note that this algorithm uses the direct path from Daughter B to the L0 FPGA.
 The masks should be set to 0x02 on daughters A and C, and 0x00 on daughters B
and D. This will mask out the second ADC channel on daughters A and C only and are
compatible with the Heavy-Ion algorithm so that channel masks don’t need to change for
different collision species. This effectively makes the Pair thresholds as follows :
 Pair A : ZDC E1 (East Front)
 Pair B : ZDC E2 + E3 (East Back)
 Pair C : ZDC W1 (West Front)
 Pair D : ZDC W2 + W3 (West Back)
And the Sum thresholds as follows :
 Sum A+B : ZDC E1 + E2 + E3 (East Sum)
 Sum C+D : ZDC W1 + W2 + W3 (West Sum)

 Heavy-Ion Algorithm :
 This algorithm compares the East and West Analog Sums to four different
thresholds, compares the East and West Attenuated Analog Sums to two thresholds, and
outputs the upper bits of the E1TAC and W1TAC signals if they are within some range.
To choose this algorithm set the Algorithm Select register to ‘1’ for East or West.
 This algorithm does not use the “Good Hit” requirements.
 The upper 10 bits of the E1TAC signal (Daughter A, ch4) is passed on to L0 if:
 TAC_MIN < E1TAC < TAC_MAX
 Otherwise, 0x000 is passed on to L0 for E1TAC. An equivalent condition is
required to pass on the upper 10 bits of W1TAC (Daughter C, ch4). Note that the “Good
Hit” ADC threshold register is not used in this algorithm.
 The ESum, WSum, ESumA, and WSumA threshold bits have no requirements on
their TAC signals; a threshold bit is ‘1’ if the corresponding channel is greater than the
corresponding threshold with no other requirements.

Inputs:
 QT8A : E1 (ch0), ESum (ch2), ESumA (ch3), E1TAC (ch4)
 QT8B : E2 (ch0), E3 (ch1)
 QT8C : W1 (ch0), WSum (ch2), WSumA(ch3), W1TAC (ch4)
 QT8D : W2 (ch0), W3 (ch2)

Registers (1 Set Per Daughter Card):

Alg. Reg. 0 (Reg 13): “Good Hit” ADC_Th (pp Only)
Alg. Reg. 1 (Reg 14): “Good Hit” TAC_Min (pp & Heavy-Ion)
Alg. Reg. 2 (Reg 15): “Good Hit” TAC_Max (pp & Heavy-Ion)
Alg. Reg. 3 (Reg 16): E/W Analog Sum Threshold 0 (Heavy-Ion Only)
Alg. Reg. 4 (Reg 17): E/W Analog Sum Threshold 1 (Heavy-Ion Only)
Alg. Reg. 5 (Reg 18): E/W Analog Sum Threshold 2 (Heavy-Ion Only)
Alg. Reg. 6 (Reg 19): E/W Analog Sum Threshold 3 (Heavy-Ion Only)
Alg. Reg. 7 (Reg 20): E/W Attenuated Analog Sum Threshold 4 (Heavy-Ion Only)
Alg. Reg. 8 (Reg 21): E/W Attenuated Analog Sum Threshold 5 (Heavy-Ion Only)
Alg. Reg. 9 (Reg 22): Pair Threshold (E/W Front/Back) (pp Only)
Alg. Reg. 10 (Reg 23): Sum Threshold (E/W) (only Daughters B,D) (pp Only)
Alg. Reg. 11 (Reg 24): Algorithm Select (0 = pp, 1 = Heavy-Ion) (pp & Heavy-Ion)

 QT Reg. 11 : Channel Mask

LUT:
 TAC timing adjustment/ADC Pedestal subtraction for each channel

Algorithm Latch: 1

L0 Output to DSM:
 (0-9) : West TAC (Daughter C, ch4) (Upper 10 bits)
 (10-19) : East TAC (Daughter A, ch4) (Upper 10 bits)
 (20-25) : West Sum/Threshold Bits (see below)
 (26-31) : East Sum/Threshold Bits (see below)

 Sum/Threshold Bits : pp Algorithm :
 West :
 (20-22) : West ADC Sum (bits 11-13) (Daughters C+D)
 (23) : West Pair Good (C)
 (24) : West Pair Good (D)
 (25) : West Sum Good (C+D)
 East :
 (26-28) : East ADC Sum (bits 11-13) (Daughters A+B)
 (29) : East Pair Good (A)
 (30) : East Pair Good (B)
 (31) : East Sum Good (A+B)

 Sum/Threshold Bits : Heavy-Ion Algorithm :
 West :
 (20) : WSum > Th0
 (21) : WSum > Th1
 (22) : WSum > Th2
 (23) : WSum > Th3
 (24) : WSumA > Th4
 (25) : WSumA > Th5
 East :
 (26) : ESum > Th0
 (27) : ESum > Th1
 (28) : ESum > Th2
 (29) : ESum > Th3
 (30) : ESumA > Th4
 (31) : ESumA > Th5

 Actions:

9 8 7 6 5 4 3 2 1 Tick

- - - L
atch O

ut :
 L

ocal_T
A

C
A _del2

 pp:
 (0+1)A _del1
 Pair_T

h
A

 H
I:

 A
D

C
_T

h_X
A _del2

(0+1)A > Th →
 Pair_T

h
A

(0+1)A _del1
L

ocal_T
A

C
A _del2

A
D

C
_T

h_X
A _del2

G
ood C

h0 + G
ood C

h1 →
 (0+1)A

L
ocal_T

A
C

A _del1
A

D
C

_T
h_X

A _del1

L
atch “G

ood H
it” A

D
C

 &
 T

A
C

L

atch “G
ood T

A
C

” T
A

C

A
D

C
_X

 > Th →
 A

D
C

_T
h_X

A

“G
ood H

it” A
D

C
 &

 TA
C

 Th
D

elay A
D

C
 &

 T
A

C
 (del1)

L
atch Inputs

Q
T8A

(0+1+8+9)A
B > Th →

 Sum
_T

h
A

B
Sum

A
B _del1

Pair_T
h

A _del2
Pair_T

h
B _del4

A
D

C
_T

h_X
A _del2

T
A

C
A _del2

(0+1+8+9)A
B →

 Sum
A

B
T

A
C

A _del1
Pair_T

h
A _del1

Pair_T
h

B _del3
A

D
C

_T
h_X

A _del1

Pair_T
h

B _del2
(8+9)B _del3
L

atch In:
 T

A
C

A
 (0+1)A
 Pair_T

h
A

 A
D

C
_T

h_X
A

Pair_T
h

B _del1
(8+9)B _del2

(8+9)B > Th →
 Pair_T

h
B

(8+9)B _del1
 G

ood C
h8 + G

ood C
h9 →

 (0+1)B
 L

atch “G
ood H

it” A
D

C
 &

 T
A

C

 “G
ood H

it” A
D

C
 &

 TA
C

 Th
D

elay A
D

C
 &

 T
A

C
 (del1)

L
atch Inputs

Q
T8B

- - - L
atch O

ut :
 L

ocal_T
A

C
C _del2

 pp:
 (0+1)C _del1
 Pair_T

h
C

 H
I:

 A
D

C
_T

h_X
C _del2

(0+1)C > Th →
 Pair_T

h
C

(0+1)C _del1
L

ocal_T
A

C
C _del2

A
D

C
_T

h_X
C _del2

G
ood C

h0 + G
ood C

h1 →
 (0+1)C

L
ocal_T

A
C

C _del1
A

D
C

_T
h_X

C _del1

L
atch “G

ood H
it” A

D
C

 &
 T

A
C

L

atch “G
ood T

A
C

” T
A

C

A
D

C
_X

 > Th →
 A

D
C

_T
h_X

C

“G
ood H

it” A
D

C
 &

 TA
C

 Th
D

elay A
D

C
 &

 T
A

C
 (del1)

L
atch Inputs

Q
T8C

(0+1+8+9)C
D > Th →

 Sum
_T

h
C

D
Sum

C
D _del1

Pair_T
h

C _del2
Pair_T

h
D _del4

A
D

C
_T

h_X
C _del2

T
A

C
C _del2

(0+1+8+9)C
D →

 Sum
C

D
T

A
C

C _del1
Pair_T

h
C _del1

Pair_T
h

D _del3
A

D
C

_T
h_X

C _del1

Pair_T
h

D _del2
(8+9)D _del3
L

atch In:
 T

A
C

C
 (0+1)C
 Pair_T

h
C

 A
D

C
_T

h_X
C

Pair_T
h

D _del1
(8+9)D _del2

(8+9)D > Th →
 Pair_T

h
D

(8+9)D _del1
 G

ood C
h8 + G

ood C
h9 →

 (0+1)D
 L

atch “G
ood H

it” A
D

C
 &

 T
A

C

 “G
ood H

it” A
D

C
 &

 TA
C

 Th
D

elay A
D

C
 &

 T
A

C
 (del1)

L
atch Inputs

Q
T8D

14

13

12

11

10

Tick

- - - - - Q
T8A

L
atch O

ut : T
A

C
A _del6

 to L
0 FPG

A

T
A

C
A _del6 (bits 0-7)

T
A

C
A _del5 (bits 0-7)

T
A

C
A _del4 (bits 0-7)

T
A

C
A _del3 (bits 0-7)

L
atch O

ut :
 T

A
C

A _del2 (bits 8-9)
 pp :
 Sum

A
B _del1

 Sum
T

h
A

B
 Pair_T

h
A _del2

 Pair_T
h

B _del4
 H

I :
 A

D
C

_T
h_X

A _del2

Q
T8B

- - L
atch O

ut :
 E

ast B
its (8 bits)

L
atch In :

 E
ast B

its (8 bits)

- Q
T8C

L
atch O

ut :
 E

ast B
its (8 bits)

 T
A

C
C

 pp :
 Sum

C
D

 Sum
_T

h
C

D
 Pair_T

h
C

 Pair_T
h

D
 H

I :
 A

D
C

_T
h_X

C

L
atch In :

 E
ast B

its (8 bits)
Sum

C
D _del5

Sum
_T

h
C

D _del4
Pair_T

h
C _del6

Pair_T
h

D _del8
A

D
C

_T
h_X

C _del6
T

A
C

C _del6

Sum
C

D _del4
Sum

_T
h

C
D _del3

Pair_T
h

C _del5
Pair_T

h
D _del7

A
D

C
_T

h_X
C _del5

T
A

C
C _del5

Sum
C

D _del3
Sum

_T
h

C
D _del2

Pair_T
h

C _del4
Pair_T

h
D _del6

A
D

C
_T

h_X
C _del4

T
A

C
C _del4

Sum
C

D _del2
Sum

_T
h

C
D _del1

Pair_T
h

C _del3
Pair_T

h
D _del5

A
D

C
_T

h_X
C _del3

T
A

C
C _del3

Q
T8D

